Abstract

Direct activation of carbon–fluorine bonds (C–F) to introduce the silyl or boryl groups and generate valuable carbon–silicon (C–Si) or carbon–boron (C–B) bonds is important in the development of synthetically useful reactions, owing to the unique opportunities for further derivatization to achieve more complex molecules. Despite considerable progress of C–F bond activation to construct carbon–carbon (C–C) and carbon–heteroatom (C–X) bond formation, the defluorosilylation via C–F cleavage has been rarely demonstrated. Here, we report an ipso-silylation of aryl fluorides via cleavage of unactivated C–F bonds by a Ni catalyst under mild conditions and without the addition of any external ligand. Alkyl fluorides are also directly converted into the corresponding alkyl silanes under similar conditions, even in the absence of the Ni catalyst. Applications of this protocol in late-stage defluorosilylation of potentially bioactive pharmaceuticals and in further derivatizations are also carried out.

Highlights

  • Direct activation of carbon–fluorine bonds (C–F) to introduce the silyl or boryl groups and generate valuable carbon–silicon (C–Si) or carbon–boron (C–B) bonds is important in the development of synthetically useful reactions, owing to the unique opportunities for further derivatization to achieve more complex molecules

  • One of the recent significant achievements in this area is the defluoroborylation independently reported by the groups of Martin and Hosoya; this method still is limited since it inevitably requires the use of electron-rich and expensive ligands such as phosphines or N-heterocyclic carbenes (NHCs), as well as relatively high temperatures (Fig. 1b, path b)[14,15]

  • Prompted by the versatility and pivotal role of organosilicon compounds[16], as well as by our ongoing interest in the activation of inert C–F bonds[17], we report an available example of the ipso-silylation of aryl and alkyl fluorides via cleavage of unactivated C–F bonds under catalytic conditions mediated by Ni or in the absence of metal catalyst (Fig. 1c)

Read more

Summary

Introduction

Direct activation of carbon–fluorine bonds (C–F) to introduce the silyl or boryl groups and generate valuable carbon–silicon (C–Si) or carbon–boron (C–B) bonds is important in the development of synthetically useful reactions, owing to the unique opportunities for further derivatization to achieve more complex molecules. Prompted by the versatility and pivotal role of organosilicon compounds[16], as well as by our ongoing interest in the activation of inert C–F bonds[17], we report an available example of the ipso-silylation of aryl and alkyl fluorides via cleavage of unactivated C–F bonds under catalytic conditions mediated by Ni or in the absence of metal catalyst (Fig. 1c). By means of this process, we have prepared a broad variety of aryl silanes and alkyl silanes. The present method is an extremely rare example of a defluorosilylation reaction using silylated reagents

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.