Abstract

Omega-hydroperfluorocarboxylates (ω-HPFCAs, HCF2-(CF2)n-1-COO-) are commercially available in bulk quantities and have been applied in agrochemicals, fluoropolymer production, and semiconductor coating. In this study, we used kinetic measurements, theoretical calculations, model compound experiments, and transformation product analyses to reveal novel mechanistic insights into the reductive and oxidative transformation of ω-HPFCAs. Like perfluorocarboxylates (PFCAs, CF3-(CF2)n-1-COO-), the direct linkage between HCnF2n- and -COO- enables facile degradation under UV/sulfite treatment. To our surprise, the presence of the H atom on the remote carbon makes ω-HPFCAs more susceptible than PFCAs to decarboxylation (i.e., yielding shorter-chain ω-HPFCAs) and less susceptible to hydrodefluorination (i.e., H/F exchange). Like fluorotelomer carboxylates (FTCAs, CnF2n+1-CH2CH2-COO-), the C-H bond in HCF2-(CF2)n-1-COO- allows hydroxyl radical oxidation and limited defluorination. While FTCAs yielded PFCAs in all chain lengths, ω-HPFCAs only yielded -OOC-(CF2)n-1-COO- (major) and -OOC-(CF2)n-2-COO- (minor) due to the unfavorable β-fragmentation pathway that shortens the fluoroalkyl chain. We also compared two treatment sequences-UV/sulfite followed by heat/persulfate and the reverse-toward complete defluorination of ω-HPFCAs. The findings will benefit the treatment and monitoring of H-containing per- and polyfluoroalkyl substance (PFAS) pollutants as well as the design of future fluorochemicals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.