Abstract

Cytochrome P450(BM3)-F87G catalyzed the oxidative defluorination of 4-fluorophenol, followed by reduction of the resulting benzoquinone to hydroquinone via the NADPH P450-reductase activity of the enzyme. The k (cat) and K (m) for this reaction were 71 ± 5 min(-1) and 9.5 ± 1.3 mM, respectively. Co-incubation of the reaction mixture with long chain aldehydes stimulated the defluorination reaction, with the 2,3-unsaturated aldehyde, 2-decenal producing a 12-fold increase in catalytic efficiency. At 150 μM aldehyde, k (cat) increased to 158 ± 4, while K (m) decreased to 1.8 ± 0.2. The effects of catalase, glutathione and ascorbate on the reaction were all consistent with a direct oxygen insertion mechanism, as opposed to a radical mechanism. The study demonstrates the potential use of P450(BM3) mutants in oxidative defluorination reactions, and characterizes the novel stimulatory action of straight chain aldehydes on this activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.