Abstract
In order to solve the problem of deflecting a dangerous asteroid from a collision orbit with the Earth, using a low-thrust engine directed tangentially to the trajectory is considered. The engine can be mounted on the asteroid or on a “gravity tractor.” The purpose of this study is to establish the fundamental possibility of steering away an asteroid to a safe distance over times of approximately a month and a year. This is acceptable since an asteroid with about a 100-m diameter is unlikely to strike immediately after its discovery. We limited ourselves to a model statement of the problem: the engine provides constant tangential acceleration. Previously, we transformed the respective Euler equations using the averaging method. Here, we solve them by the method of series in powers of “slow time” and demonstrate the adequacy of the solution on the time intervals of decades. It turns out that asteroids up to 55 m in diameter can be deflected in a year with an engine thrust of 1 N. With a thrust of 20 N, asteroids up to 50 m in diameter can be deflected in a month, and asteroids with a diameter of up to 150 m, in a year. Diverting larger asteroids requires more time or more powerful engines. The results are compared with the previously obtained similar data for the case of the transversal perturbing acceleration. The tangential traction leads to better results in all cases; however, both variants nearly coincide for orbits with eccentricities up to 0.4. The difference becomes significant at $$e > 0.5$$ .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.