Abstract

The results from a series of detonation experiments conducted to characterize the deflagration-to-detonation transition (DDT) process for ethylene-air mixtures in a 44-mm-square, 1.65-m-long tube are described. Experiments were conducted for both single-shot detonations involving quiescent mixtures as well as multicycle detonations involving dynamic fill. For the experiments, high-frequency pressure and flame emission measurements were made to obtain the compression wave and flame speeds, respectively. In addition, schlieren and hydroxyl-radical/planar-laser-induced-fluorescence (OH-PLIF) imaging were applied to investigate the interactions between the shock-wave and combustion phenomena during both deflagration and detonation. For ethylene-air mixtures, strategically placed obstacles were necessary to achieve DDT. The effect of the presence of obstacles on flame acceleration was systematically investigated by changing the obstacle configuration. The parametric study of obstacle blockage ratio, spacing between obstacles, and length of the obstacle configuration indicated that for successful detonations the obstacle needs to accelerate the flame to a minimum flame speed of roughly half the Chapman-Jouguet detonation velocity. Differences in the flame and compression wave velocities demonstrated the development of a coupled feedback mechanism as the wave propagated along the tube. A series of simultaneous schlieren and OH-PLIF images showed that the obstacle plays a major role in generating small/large-scale turbulence that enhances flame acceleration. Localized explosions of pockets of unburned mixture further enhanced the shock-wave strength to continuously increase the flame speed. The results of this experimental study support the importance of obstacles as a means to enhance DDT and provide a potential solution for practical pulse-detonation-engine applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.