Abstract
Although the vortex is ubiquitous in nature, its definition is somewhat ambiguous in the field of fluid dynamics. In this absence of a rigorous mathematical definition, considerable confusion appears to exist in visualizing and understanding the coherent vortical structures in turbulence. Cited in the previous studies, a vortex cannot be fully described by vorticity, and vorticity should be further decomposed into a rotational and a non-rotational part to represent the rotation and the shear, respectively. In this paper, we introduce several new concepts, including local fluid rotation at a point and the direction of the local fluid rotation axis. The direction and the strength of local fluid rotation are examined by investigating the kinematics of the fluid element in two- and three-dimensional flows. A new vector quantity, which is called the vortex vector in this paper, is defined to describe the local fluid rotation and it is the rotational part of the vorticity. This can be understood as that the direction of the vortex vector is equivalent to the direction of the local fluid rotation axis, and the magnitude of vortex vector is the strength of the location fluid rotation. With these new revelations, a vortex is defined as a connected region where the vortex vector is not zero. In addition, through direct numerical simulation (DNS) and large eddy simulation (LES) examples, it is demonstrated that the newly defined vortex vector can fully describe the complex vertical structures of turbulence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.