Abstract

This paper is concerned with the problem of recognizing definition sentences. Given a definition question like "Who is the person X?", we are to retrieve the definition sentences which capture descriptive information correspond variously to a person's age, occupation, of some role a person played in an event from the collection of news articles. In order to retrieve as many relevant sentences for the definition question as possible, we adopt a centroid based statistical approach which has been applied in summarization of multiple documents. To improve the precision and recall performance, the weight measure of centroid words is supplemented by using external knowledge resource such as Wikipedia and redundant candidate sentences are removed from candidate definitions. We see some improvements obtained by our approach over the baseline for 20 IT persons who have high document frequency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.