Abstract

Research in exercise physiology using infrared thermography has increased in the last years. However, the definition of the Regions of Interest (ROIs) varies strongly between studies. Therefore, the aim of this study was to use a factor analysis approach to define highly correlated groups of thermographic ROIs during a cycling test. Factor analyses were performed based on the moment of measurement and on the variation of skin temperatures as a result of the cycling exercise. 19 male participants cycled during 45min at 50% of their individual peak power output with a cadence of 90rpm. Infrared thermography was used to measure skin temperatures in sixteen ROIs of the trunk and lower limbs at three moments: before, immediately after and 10min after the cycling test. Factor analyses were used to identify groups of ROIs based on the skin absolute temperatures at each moment of measurement as well as on skin temperature variations between moments. All the factor analyses performed for each moment and skin temperature variation explained more than the 80% of the variance. Different groups of ROIs were obtained when the analysis was based on the moment of measurement or on the effect of exercise on the skin temperature. Furthermore, some ROIs were grouped in the same way in both analyses (e.g. the ROIs of the trunk), whereas other regions (legs and their joints) were grouped differently in each analysis. Differences between groups of ROIs are related to their tissue composition, muscular activity and capacity of sweating. In conclusion, the resultant groups of ROIs were coherent and could help researchers to define the ROIs in future thermal studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.