Abstract
Lipoprotein(a) [Lp(a)] is suggested to link atherosclerosis and thrombosis owing to the similarity between the apolipoprotein(a) [apo(a)] moiety of Lp(a) and plasminogen. Lp(a) may interfere with tPA-mediated plasminogen activation in fibrinolysis, thereby generating a hypercoaguable state in vivo. The present study employed surface plasmon resonance (SPR) to examine the binding interaction between plasminogen and a physiologically relevant, 17-kringle recombinant apo(a) species [17K r-apo(a)] in real time. Native, intact Glu(1)-plasminogen bound to apo(a) with substantially higher affinity (K(D) approximately 0.3 microM) compared to a series of plasminogen fragments (K1-5, K1-3, K4, K5P, and tail domain) that interacted weakly with apo(a) (K(D) > 50 microM). Treatment of Glu(1)-plasminogen with citraconic anhydride (a lysine modification reagent) completely abolished binding to wild-type 17K r-apo(a), whereas citraconylated 17K r-apo(a) decreased binding to wild-type Glu(1)-plasminogen by approximately 50%; inhibition of binding was also observed using the lysine analogue epsilon-aminocaproic acid. Whereas native Glu(1)-plasminogen exhibited monophasic binding to 17K r-apo(a), truncated Lys(78)-plasminogen exhibited biphasic binding. Altering Glu(1)-plasminogen from its native, closed conformation (in chloride buffer) to an open conformation (in acetate buffer) also yielded biphasic isotherms. These SPR data are consistent with a two-state kinetic model in which a conformational change in the plasminogen-apo(a) complex may occur following the initial binding event. Differential binding kinetics between Glu(1)-/Lys(78)-plasminogen and apo(a) may explain why Lp(a) is a stronger inhibitor of tPA-mediated Glu(1)-plasminogen activation compared to Lys(78)-plasminogen activation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.