Abstract
In this paper, we study the solvability of a second-kind Volterra integral equation. By replacing the right-hand side and the unknown function, the integral equation is reduced to an integral equation, the kernel of which is not «compressiblek. Using the Laplace transform, the obtained equation is reduced to an ordinary first-order differential equation (linear). Its solution is found. The solution of the homogeneous integral equation corresponding to the original nonhomogeneous integral equation found in explicit form. Special cases of a homogeneous integral equation and its solutions are written for different values of the parameter k. Classes are indicated in which the integral equation has a solution. Singular integral equations were considered in works [1–3]. Their kernels were also «incompressiblek, but kernels had an another form. In this connection, the weight classes of the solution existence differ from the class of the solution existence for the equation considered in this work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Bulletin of the National Engineering Academy of the Republic of Kazakhstan
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.