Abstract

PurposeTo compare tumor motion amplitudes measured with 2D fluoroscopic images (FI) and with an inhale/exhale CT (IECT) techniqueMaterials and methodsTumor motion of 52 patients (39 lung patients and 13 liver patients) was obtained with both FI and IECT. For FI, tumor detection and tracking was performed by means of a software developed by the authors. Motion amplitude and, thus, internal target volume (ITV), were defined to cover the positions where the tumor spends 95% of the time. The algorithm was validated against two different respiratory motion phantoms. Motion amplitude in IECT was defined as the difference in the position of the centroid of the gross tumor volume in the image sets of both treatments.ResultsImportant differences exist when defining ITVs with FI and IECT. Overall, differences larger than 5 mm were obtained for 49%, 31%, and 9.6% of the patients in Superior‐Inferior (SI), Anterior‐Posterior (AP), and Lateral (LAT) directions, respectively. For tumor location, larger differences were found for tumors in the liver (73.6% SI, 27.3% AP, and 6.7% in LAT had differences larger than 5 mm), while tumors in the upper lobe benefitted less using FI (differences larger than 5 mm were only present in 27.6% (SI), 36.7% (AP), and 0% (LAT) of the patients).ConclusionsUse of FI with the linac built‐in CBCT system is feasible for ITV definition. Large differences between motion amplitudes detected with FI and IECT methods were found. The method presented in this work based on FI could represent an improvement in ITV definition compared to the method based on IECT due to FI permits tumor motion acquisition in a more realistic situation than IECT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call