Abstract

Free O-H groups of water are often found at the water-hydrophobic medium interface, e.g. for water contact with hydrophobic protein residues, or at the water-air interface. In surface-specific vibrational spectroscopic studies using sum-frequency generation (SFG) spectroscopy, free O-H groups are experimentally well characterized in the O-H stretch region by a sharp 3700 cm-1 peak. Although these free O-H groups are often defined as the O-H groups which are not hydrogen-bonded to other water molecules, a direct correlation between such non-hydrogen-bonded O-H groups and the 3700 cm-1 SFG response has been lacking. Our data show that commonly used hydrogen bond definitions do not adequately capture the free O-H groups contributing to the 3700 cm-1 peak. We thus formulate a new definition for capturing the subensemble of the surface free O-H groups using the intermolecular distance and the angle formed by the water dimer, through the comparison of the ∼3700 cm-1 SFG response and the responses from the selected free O-H groups at the HOD-air interface. Using these optimized free O-H group definitions, we infer the fraction of interfacial water molecules with free O-H groups of 28%, a vibrational lifetime of the free O-H groups of 1.3 ps, and the angle formed by the free O-H groups and the surface normal of 67° at the water-air interface. We expect that this improved free O-H group definition can be helpful in exploring the structure and dynamics of the interfacial water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.