Abstract

Plasma membranes are dynamic compartments with key functions in solute transport, cell shape, and communication between cells and the environment. In mammalian cells and yeast, the plasma membrane has been shown to be compartmented into so-called lipid rafts, which are defined by their resistance to treatment with non-ionic detergents. In plants, the existence of lipid rafts has been postulated, but the precise composition of this membrane compartment is still under debate. Here we were able to experimentally clearly distinguish (i) true sterol-dependent “raft proteins” and (ii) sterol-independent “non-raft” proteins and co-purifying “contaminants” in plant detergent-resistant membranes. We used quantitative proteomics techniques involving 15N metabolic labeling and specific disruption of sterol-rich membrane domains by methyl-β-cyclodextrin. Among the sterol-dependent proteins we found an over-representation of glycosylphosphatidylinositol-anchored proteins. A large fraction of these proteins has functions in cell wall anchoring. We were able to distinguish constant and variable components of plant sterol-rich membrane microdomains based on their responsiveness to the drug methyl-β-cyclodextrin. Predominantly proteins with signaling functions, such as receptor kinases, G-proteins, and calcium signaling proteins, were identified as variable members in plant lipid rafts, whereas cell wall-related proteins and specific proteins with unknown functions make up a core set of sterol-dependent plant plasma membrane proteins. This allows the plant to maintain a balance between static anchoring of cell shape forming elements and variable adjustment to changing external conditions.

Highlights

  • Plasma membranes are dynamic compartments with key functions in solute transport, cell shape, and communication between cells and the environment

  • Cholesterol-dependent segregation of lipid raft proteins from non-raft proteins was visualized in mammalian cells and is consistent with the view that raft domains in the plasma membrane of cells are usually small and highly dispersed, but their size can be modulated by oligomerization of raft components [2]

  • A quantitative proteomics study allowing a distinction of proteins co-purifying in the detergent-resistant membrane

Read more

Summary

Introduction

Plasma membranes are dynamic compartments with key functions in solute transport, cell shape, and communication between cells and the environment. Proteins with signaling functions, such as receptor kinases, G-proteins, and calcium signaling proteins, were identified as variable members in plant lipid rafts, whereas cell wall-related proteins and specific proteins with unknown functions make up a core set of sterol-dependent plant plasma membrane proteins. This allows the plant to maintain a balance between static anchoring of cell shape forming elements and variable adjustment to changing external conditions. A quantitative proteomics study allowing a distinction of proteins co-purifying in the detergent-resistant membrane

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.