Abstract

In Quine's New foundations the axiom of infinity does not appear to be provable. In a certain stronger system, very closely related to Quine's New foundations, the axiom of infinity is provable. One of the peculiarities of this latter system is that even unstratified propositions can be proved by induction (this is used in the proof of the axiom of infinity). It would seem that definition by induction should also be possible quite irrespective of any conditions of stratification in this latter system. In this paper it is shown that such is the case.Theorem. If α, α1, α2, …, αs are any classes, and if there is no confusion of bound variables in {Sxp}(v) or {Sxq}(v) and neither z nor v occurs free in p or q, and if⊦ (y1, y1, … ys):. y1ϵα1 . y2ϵα2 . … . ysϵαs : ⊃ : (Ez) : zϵα : (v) : v . ≡ . {Sxp}(v),⊦ (y, n, y1, y2, …, ys) :. yϵα . n ϵ Fin . y1ϵα1 . y2ϵα2. … . ysϵαs : ⊃ : (Ex) :zxα : (v) : v=z . ≡ . {Sxq}(v),then there is an r such thai there is no confusion of bound variables in {Sxr}(v) and neither z nor v occurs free in r, and⊦ (n, y1, y2, …, ys) :. nϵ Fin . y1ϵα1 . y2ϵα2 . … . ysϵαs : ⊃ : (Ez) : zϵα : (v) : v=z . ≡ . {Sxr}(v),⊦ (y1, y2, …, ys) : y1ϵα1 . y2ϵα2 . … . ysϵαs . ⊃ . ιx{Snr}(0) = ιxp,⊦ (n, y1, y2, …, ys) : nϵ Fin . y1ϵα1 . y2ϵα2 . … . ysϵαs . ⊃ . ιx{Snr}(n+1) = ιx{Syq}(ιxr).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.