Abstract

In contrast to the normal seasons that are classified by the distribution of temperature and precipitation, this study defines a new concept of the water abundant season (WAS) when water is more abundant than in other seasons. We investigated its characteristics on 60 stations in Korea, and compared it with Changma (the rainy season). In this study, Available Water Resources Index (AWRI), which is a summed daily precipitation accumulated for more than 365 days with a time-dependent reduction function and reflects the current water condition, was used to quantify the water amount. In addition, the median value of 30 year’s daily AWRI was used as the criterion value dividing WAS from other seasons. The results show that the terminologies on water resources have changed from qualitative concepts such as abundance, deficit, and continuous rainfall, to quantitative values using AWRI. In detail, it was known that the WAS in Korea starts on 2 July and ends on 25 December, lasting for 176 days. The onset date of WAS in Korea is getting earlier, with a trend of 2.9 days/decade. The end date does later with a delay of 7.5 days/decade, and the duration is increasing at 10.4 days/decade. We looked at the WAS by stations and saw, on average, that 14 June was the earliest onset date in Seogwipo and 29 July was the latest one in Sokcho, representing a difference of 45 days. The earliest end date was in Tongyeong at 5 December and the latest one is in Uljin at 16 January of the following year, a difference of 41 days. Tongyeong had the shortest (166 days) WAS duration and Uljin had the longest (207 days) on average. The big spatial differences of the criterion values per station were detected and quantified. The largest criterion value for WAS were recorded in Seongsan with 270.7 mm, which is almost double of the smallest value, which was recorded in Uiseong (135.9 mm). Comparing WAS with the Changma (the rainy season in Korea) showed that the onset date of WAS is close to that of Changma, but the end date shows a big difference. It is also known that WAS was more useful than Changma in detecting and demonstrating both of the season’s progress and the seasonal state of water climates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call