Abstract

Fuzzy logic programming has been lately used as a general framework for representing and handling imprecise knowledge. In this paper, we define the syntax and the semantics of definite weighted fuzzy logic programs, which extend definite fuzzy logic programs by allowing the inclusion of different significance weights in the individual atoms that make up the antecedent of a fuzzy logic rule. The weights add expressiveness to a fuzzy logic program and allow the determination of the level up to which an atom in the antecedent of a rule may affect the truth value of its consequent. In describing the semantics of definite weighted fuzzy logic programs we introduce the notion of the generalized weighted fuzzy conjunction operator, which can be regarded as a weighted t-norm based aggregation. We determine the properties of generalized weighted fuzzy conjunction operators and provide several examples. A methodology for constructing generalized weighted fuzzy conjunction operators using generator functions of existing t-norms is also introduced. Finally, a method for setting up a parametric weighted fuzzy logic program and automatically adapting the weights of its rules using a numerical dataset is developed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.