Abstract
Previous work by Sung and colleagues identified unusual salt requirements for hRAD51 strand exchange compared to RecA [S. Sigurdsson, K. Trujillo, B. Song, S. Stratton, P. Sung, Basis for avid homologous DNA strand exchange by human Rad51 and RPA, J. Biol. Chem. 276 (2001) 8798–8806]. Later studies showed that this salt [(NH 4) 2SO 4] appeared to enhance the ability of hRAD51 to distinguish ssDNA from dsDNA [Y. Liu, A.Z. Stasiak, J.Y. Masson, M.J. McIlwraith, A. Stasiak, S.C. West, Conformational changes modulate the activity of human RAD51 protein, J. Mol. Biol. 337 (2004) 817–827]. The mechanism of this salt effect remains enigmatic. Here, we detail the properties of several neutral salts on hRAD51 activities. We found that the cation identity correlated with the stimulatory effect of these neutral salts on hRAD51 ATPase and strand exchange activities. The salt effect appears to be related to the size of the cation, which may be largely mimicked with the cesium ion. These results are consistent with the hypothesis that stimulating cations induce an important conformation and/or transition state in hRAD51. In the presence of an optimal ammonium-based salt (NaNH 4HPO 4), hRAD51 mediated strand exchange was successfully performed using a simplified protocol. We confirmed and extend the observation that efficient strand exchange correlated with preferential binding of ssDNA over dsDNA. In addition we observed an induced stability of the hRAD51–DNA complex in the presence of ATP that becomes unstable following ATP hydrolysis (the ADP form or nucleotide free form). These salt-induced characteristics of hRAD51 increasingly resemble RecA-mediated recombinase activities, which should help in dissecting the mechanism of these proteins in homologous recombination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.