Abstract

In response to virus-induced shutoff host protein synthesis, dynamic aggregates containing mRNA, RNA-binding proteins and translation factors termed stress granules (SGs) often accumulate within the cytoplasm. SGs typically form following phosphorylation and inactivation of the eukaryotic translation initiation factor 2α (eIF2α), a substrate of the double-stranded RNA (dsRNA)-activated kinase protein kinase R (PKR). The detection of innate immune sensors and effectors like PKR at SGs suggests a role in pathogen nucleic acid sensing. However, the functional importance of SGs in host innate responses is unclear and has primarily been examined in response to infection with select RNA viruses. During infection with the DNA virus herpes simplex virus 1 (HSV-1), the virus-encoded virion host shutoff (VHS) endoribonuclease is required to restrict interferon production, PKR activation, and SG formation, although the relationship between these activities remains incompletely understood. Here, we show that in cells infected with a VHS-deficient HSV-1 (ΔVHS) dsRNA accumulated and localized to SGs. Surprisingly, formation of dsRNA and its concentration at SGs was not required for beta interferon mRNA induction, indicating that suppression of type I interferon induction by VHS does not stem from its control of dsRNA accumulation. Instead, STING signaling downstream of cGMP-AMP synthase (cGAS)-dependent DNA sensing is required for beta interferon induction. In contrast, significantly less PKR activation is observed when SG assembly is disrupted by ISRIB, an inhibitor of phosphorylated eIF2α-mediated translation repression, or depleting SG scaffolding proteins G3BP1 or TIA1. This demonstrates that PKR activation is intimately linked to SG formation and that SGs form important hubs to potentiate PKR activation during infection.IMPORTANCE Formation of cytoplasmic stress granules that are enriched for innate immune sensors and effectors is suppressed during many viral infections. It is unclear, however, to what extent this is a side effect of viral efforts to maintain protein synthesis or intentional disruption of a hub for innate immune sensing. In this study, we utilize a herpes simplex virus 1 mutant lacking the RNA nuclease VHS which upon infection induces SGs, PKR activation, and beta interferon to address this question. We show that dsRNA is localized to SGs and that SGs can function to promote PKR activation in the context of a DNA virus infection, but we find no evidence to support their importance for interferon induction during HSV-1 infection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call