Abstract
Kidneys from donation after circulatory death (DCD) are highly sensitive to ischemia-reperfusion injury and thus require careful reconditioning, such as normothermic regional perfusion (NRP). However, the optimal NRP protocol remains to be characterized. NRP was modeled in a DCD porcine model (30minutes of cardiac arrest) for 2, 4, or 6hours compared to a control group (No-NRP); kidneys were machine-preserved and allotransplanted. NRP appeared to permit recovery from warm ischemia, possibly due to an increased expression of HIF1α-dependent survival pathway. At 2hours, blood levels of ischemic injury biomarkers increased: creatinine, lactate/pyruvate ratio, LDH, AST, NGAL, KIM-1, CD40 ligand, and soluble-tissue-factor. All these markers then decreased with time; however, AST, NGAL, and KIM-1 increased again at 6hours. Hemoglobin and platelets decreased at 6hours, after which the procedure became difficult to maintain. Regarding inflammation, active tissue-factor, cleaved PAR-2 and MCP-1 increased by 4-6hours, but not TNF-α and iNOS. Compared to No-NRP, NRP kidneys showed lower resistance during hypothermic machine perfusion (HMP), likely associated with pe-NRP eNOS activation. Kidneys transplanted after 4 and 6hours of NRP showed better function and outcome, compared to No-NRP. In conclusion, our results confirm the mechanistic benefits of NRP and highlight 4hours as its optimal duration, after which injury markers appear.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.