Abstract

BackgroundPeripheral arterial disease (PAD) affects millions of Americans and leads to critical limb ischemia (CLI) in the most severe cases. Investigators have demonstrated the utility of hydrogen sulfide for restoring perfusion in rodent models of chronic ischemia. We sought to determine the minimum effective dose (MED) of sulfide necessary to restore perfusion in the rat hindlimb, to assess the persistence of limb perfusion after cessation of treatment, and to compare perfusion measurements between laser doppler and ultrasound methods.MethodsIn 3 separate experiments, sodium sulfide (1.0, 0.5, or 0.25 mg/kg twice daily for 14 days, 0.25 mg/kg twice daily for 7 days, 0.5 mg/kg once daily for 7 days, or 0.25 mg/kg twice daily for 3 days) or vehicle was administered after left femoral artery ligation and transection. Hindlimb perfusion was assessed by laser doppler flowmetry and contrast enhanced ultrasound over the duration of each study, and cellular proliferation and vascular density were assessed by immunohistochemical means in the initial experiment.ResultsIntravenous sodium sulfide at 0.25, 0.5, or 1.0 mg/kg twice daily for 2 weeks significantly enhanced the recovery of blood flow to the ischemic hindlimb by 7 days. The enhancement of blood flow with 1.0 mg/kg dosing was coincident with an increase in cellular proliferation and vascular density in the ischemic tissue. In a final experiment, i.v. administration of sodium sulfide at 0.5 mg/kg once daily for 7 days or 0.25 mg/kg twice daily for 7 days significantly elevated blood flow and skeletal muscle perfusion in the ischemic hindlimb, whereas 0.25 mg/kg twice daily for 3 days had no effect. This enhancement of blood flow appeared long lived, as blood flow remained elevated 3 weeks after cessation of treatment.ConclusionsThese data, together with other published observations, demonstrate the efficacy of hydrogen sulfide in restoring perfusion to chronically ischemic tissue and establish a minimum efficacious dose in the rat hindlimb model.

Highlights

  • Peripheral arterial disease (PAD) affects millions of Americans and leads to critical limb ischemia (CLI) in the most severe cases

  • Peripheral arterial disease (PAD) is characterized by a narrowing of the arteries in peripheral vessels caused by atherosclerotic plaque formation, resulting in decreased blood flow to distal appendages

  • Surgical model Under 1.5% isoflurane, animal fur was removed from the distal hind limbs using depilatory cream, and blood flow was measured as described below

Read more

Summary

Introduction

Peripheral arterial disease (PAD) affects millions of Americans and leads to critical limb ischemia (CLI) in the most severe cases. Investigators have demonstrated the utility of hydrogen sulfide for restoring perfusion in rodent models of chronic ischemia. Peripheral arterial disease (PAD) is characterized by a narrowing of the arteries in peripheral vessels caused by atherosclerotic plaque formation, resulting in decreased blood flow to distal appendages. This disorder affects 8 to 12 million Americans and represents a significant financial health care burden that will rise concomitantly with the rates of obesity and diabetes [1].

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.