Abstract
Carbon capture and storage (CCS) is a critical component of proposed pathways to limit global warming, though considerable upscaling is required to meet emissions reduction targets. Quantifying and managing the risks of fault reactivation is a leading barrier to scaling global CCS projects from current levels of ~40 million tonnes of carbon dioxide(CO2) per year (to target levels of several gigatonnes of CO2 per year), because CO2 injection into reservoirs can result in increased pore-fluid pressure and temperature changes, which can reduce the strength of rocks and faults and induce brittle failure. This can result in induced seismicity, whilst hydraulic fracturing of seals could provide pathways for CO2 leakage. Consequently, identifying favourable geomechanical conditions (typically determined through data on pre-injection rock stress, mechanical and elastic properties, and pore-fluid pressures) to minimise deformation of reservoirs and seals represents a key challenge in the selection of safe and effective sites for CCS projects. Critically, however, such geomechanical data are typically spatially limited (i.e. restricted to wells) and mainly consist of pre-injection crustal stress orientation measurements, rather than a full 3D description of the stress tensor and related geomechanical properties. This paper reviews some key geomechanical issues and knowledge gaps (particularly those associated with data availability and limitations) that need to be understood to enable successful reservoir and seal management for CCS projects. We also highlight recent advances in multi-scale and dimensional geomechanical modelling approaches that can be used to assess sites for the secure storage of CO2 as well as other gases, including hydrogen.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.