Abstract

The far-red limit of photosystem I (PS I) photochemistry was studied by EPR spectroscopy using laser flashes between 730 and 850 nm. In manganese-depleted spinach thylakoid membranes, the primary donor in PS I, P700, was oxidized simultaneously with tyrosine Z, the secondary donor in PS II. It was found that at 295 K PS I photochemistry, observed as P700 (+) formation, was functional up to 840 nm. This is 30 nm further to the red region than was reported for PS II photochemistry (Thapper, A., Mamedov, F., Mokvist, F., Hammarström, L., and Styring, S. (2009) Plant Cell 21, 2391-2401). The same far-red limit for the P700 (+) formation was observed in a PS I reaction center core preparation from Nostoc punctiforme. The reduction of the acceptor side of PS I, observed as reduction of the iron-sulfur centers FA and FB by low temperature EPR measurements, was also functional at 15 K with light up to >830 nm. Taken together, these results, obtained from both plants and cyanobacteria, most likely rule out involvement of the red-absorbing antenna chlorophylls in this reaction. Instead we propose the existence of weak charge transfer bands absorbing in the far-red region in the ensemble of excitonically coupled chlorophyll a molecules around P700 similar to what has been found in the reaction center of PS II. These charge transfer bands could be responsible for the far-red light absorption leading to PS I photochemistry at wavelengths up to 840 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.