Abstract

Single-cell proteomics by mass spectrometry (SCoPE-MS) is a recently introduced method to quantify multiplexed single-cell proteomes. While this technique has generated great excitement, the underlying technologies (isobaric labeling and mass spectrometry (MS)) have technical limitations with the potential to affect data quality and biological interpretation. These limitations are particularly relevant when a carrier proteome, a sample added at 25-500× the amount of a single-cell proteome, is used to enable peptide identifications. Here we perform controlled experiments with increasing carrier proteome amounts and evaluate quantitative accuracy, as it relates to mass analyzer dynamic range, multiplexing level and number of ions sampled. We demonstrate that an increase in carrier proteome level requires a concomitant increase in the number of ions sampled to maintain quantitative accuracy. Lastly, we introduce Single-Cell Proteomics Companion (SCPCompanion), a software tool that enables rapid evaluation of single-cell proteomic data and recommends instrument and data analysis parameters for improved data quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.