Abstract
BackgroundGenome-wide or application-targeted microarrays containing a subset of genes of interest have become widely used as a research tool with the prospect of diagnostic application. Intrinsic variability of microarray measurements poses a major problem in defining signal thresholds for absent/present or differentially expressed genes. Most strategies have used fold-change threshold values, but variability at low signal intensities may invalidate this approach and it does not provide information about false-positives and false negatives.ResultsWe introduce a method to filter false-positives and false-negatives from DNA microarray experiments. This is achieved by evaluating a set of positive and negative controls by receiver operating characteristic (ROC) analysis. As an advantage of this approach, users may define thresholds on the basis of sensitivity and specificity considerations. The area under the ROC curve allows quality control of microarray hybridizations. This method has been applied to custom made microarrays developed for the analysis of invasive melanoma derived tumor cells. It demonstrated that ROC analysis yields a threshold with reduced missclassified genes in microarray experiments.ConclusionsProvided that a set of appropriate positive and negative controls is included on the microarray, ROC analysis obviates the inherent problem of arbitrarily selecting threshold levels in microarray experiments. The proposed method is applicable to both custom made and commercially available DNA microarrays and will help to improve the reliability of predictions from DNA microarray experiments.
Highlights
Genome-wide or application-targeted microarrays containing a subset of genes of interest have become widely used as a research tool with the prospect of diagnostic application
Methods for systematically addressing noise in the analysis of the microarray data are only beginning to be described [4,5,6,7,8,9,10]. Such noise in microarray experiments may arise from non-specific hybridization of the labeled samples to elements printed on the microarray, print-tip effects, slide inhomogeneities, and variability in RNA isolation, purity, labeling and detection [6,9,10,11,12]
While ratios from highly abundant transcripts may be accurate, rare transcripts give absolute intensities that may be obscured by non-specific hybridization
Summary
Genome-wide or application-targeted microarrays containing a subset of genes of interest have become widely used as a research tool with the prospect of diagnostic application. Methods for systematically addressing noise in the analysis of the microarray data are only beginning to be described [4,5,6,7,8,9,10]. Such noise in microarray experiments may arise from non-specific hybridization of the labeled samples to elements printed on the microarray, print-tip effects, slide inhomogeneities, and variability in RNA isolation, purity, labeling and detection [6,9,10,11,12]. Hybridization variance contributes most significantly to the overall variation [12]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.