Abstract
We show that ${\mathbb Z}$ is definable in ${\mathbb Q}$ by a universal first-order formula in the language of rings. We also present an $\forall\exists$-formula for ${\mathbb Z}$ in ${\mathbb Q}$ with just one universal quantifier. We exhibit new diophantine subsets of ${\mathbb Q}$ like the complement of the image of the norm map under a quadratic extension, and we give an elementary proof of the fact that the set of non-squares is diophantine. Finally, we show that there is no existential formula for ${\mathbb Z}$ in ${\mathbb Q}$, provided one assumes a strong variant of the Bombieri-Lang Conjecture for varieties over ${\mathbb Q}$ with many ${\mathbb Q}$-rational points.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.