Abstract
Whereas postmortem ischemic damage is common in head injury, antemortem demonstration of ischemia has proven to be elusive. Although 15O positron emission tomography may be useful in this area, the technique has traditionally analyzed data within regions of interest (ROIs) to improve statistical accuracy. In head injury, such techniques are limited because of the lack of a priori knowledge regarding the location of ischemia, coexistence of hyperaemia, and difficulty in defining ischemic cerebral blood flow (CBF) and cerebral oxygen metabolism (CMRO2) levels. We report a novel method for defining disease pathophysiology following head injury. Voxel-based approaches are used to define the distribution of oxygen extraction fraction (OEF) across the entire brain; the standard deviation of this distribution provides a measure of the variability of OEF. These data are also used to integrate voxels above a threshold OEF value to produce an ROI based upon coherent physiology rather than spatial contiguity (the ischemic brain volume; IBV). However, such approaches may suffer from poor statistical accuracy, particularly in regions with low blood flow. The magnitude of these errors has been assessed in modeling experiments using the Hoffman brain phantom and modified control datasets. We conclude that this technique is a valid and useful tool for quantifying ischemic burden after traumatic brain injury.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.