Abstract

BackgroundRNA-seq is poised to play a major role in the management of kidney transplant patients. Rigorous definition of housekeeping genes (HKG) is essential for further progress in this field. Using single genes or a limited set HKG is inherently problematic since their expression might be altered by specific diseases in the patients being studied.MethodsTo generate a HKG set specific for kidney transplantation, we performed RNA-sequencing from renal allograft biopsies collected in a variety of clinical settings. Various normalization methods were applied to identify transcripts that had a coefficient of variation of expression that was below the 2nd percentile across all samples, and the corresponding genes were designated as housekeeping genes. Comparison with transcriptomic data from the Gene Expression Omnibus (GEO) database, pathway analysis and molecular biological functions were utilized to validate the housekeeping genes set.ResultsWe have developed a bioinformatics solution to this problem by using nine different normalization methods to derive large HKG gene sets from a RNA-seq data set of 47,611 transcripts derived from 30 biopsies. These biopsies were collected in a variety of clinical settings, including normal function, acute rejection, interstitial nephritis, interstitial fibrosis/tubular atrophy and polyomavirus nephropathy. Transcripts with coefficient of variation below the 2nd percentile were designated as HKG, and validated by showing their virtual absence in diseased allograft derived transcriptomic data sets available in the GEO. Pathway analysis indicated a role for these genes in maintenance of cell morphology, pyrimidine metabolism, and intracellular protein signaling.ConclusionsUtilization of these objectively defined HKG data sets will guard against errors resulting from focusing on individual genes like 18S RNA, actin & tubulin, which do not maintain constant expression across the known spectrum of renal allograft pathology.

Highlights

  • RNA-seq is poised to play a major role in the management of kidney transplant patients

  • Formalin fixed paraffin embedded renal allograft biopsies (n = 25) were derived from recipients diagnosed with acute tubular injury (ATI; n = 5), T cell-mediated rejection (TCMR; n = 5), interstitial fibrosis and tubular atrophy (IFTA; n = 5), and BK virus-associated nephropathy (BKVN; n = 5), as well as recipients with stable allograft function (STA; n = 5)

  • Several normalization algorithms have been described in the literature, and we explored nine different methods, namely, library size, total counts (TC), upper quartile (UQ), Median, Quantile, reads per kilobase million (RPKM), transcripts per kilobase million (TPM), trimmed mean of M -values (TMM) and DESeq

Read more

Summary

Introduction

RNA-seq is poised to play a major role in the management of kidney transplant patients. Using single genes or a limited set HKG is inherently problematic since their expression might be altered by specific diseases in the patients being studied. The application of RNA-seq to the allograft kidney is at a very rudimentary stage. Tubulin is targeted by Colchicine, a drug used in patients with gout: it inhibits microtubule polymerization by binding to tubulin and block mitosis by acting as a ‘spindle poison’ [12]. These examples illustrate how use of single genes or a limited set HKG can be inherently problematic

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call