Abstract
Thyroid hormones (THs) are essential signalling molecules for the postembryonic development of all vertebrates. THs are necessary for the metamorphosis from tadpole to froglet and exogenous TH administration precociously induces metamorphosis. In American bullfrog (Rana [Lithobates] catesbeiana) tadpoles, the TH-induced metamorphosis observed at a warm temperature (24 °C) is arrested at a cold temperature (4 °C) even in the presence of exogenous THs. However, when TH-exposed tadpoles are shifted from cold to warm temperatures (4 → 24 °C), they undergo TH-dependent metamorphosis at an accelerated rate even when the initial TH signal is no longer present. Thus, they possess a “molecular memory” of TH exposure that establishes the TH-induced response program at the cold temperature and prompts accelerated metamorphosis after a shift to a warmer temperature. The components of the molecular memory that allow the uncoupling of initiation from the execution of the metamorphic program are not understood. To investigate this, we used cultured tadpole back skin (C-Skin) in a repeated measures experiment under 24 °C only, 4 °C only, and 4 → 24 °C temperature shifted regimes and reverse transcription quantitative polymerase chain reaction (RT-qPCR) and RNA-sequencing (RNA-seq) analyses. RNA-seq identified 570, 44, and 890 transcripts, respectively, that were significantly changed by TH treatment. These included transcripts encoding transcription factors and proteins involved in mRNA structure and stability. Notably, transcripts associated with molecular memory do not overlap with those identified previously in cultured tail fin (C-fin) except for TH-induced basic leucine zipper-containing protein (thibz) suggesting that thibz may have a central role in molecular memory that works with tissue-specific factors to establish TH-induced gene expression programs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.