Abstract

An experiment was conducted in an 11-year-old black walnut (Juglans nigra L.), red oak (Quercus rubra L.), maize (Zea mays L.) alley cropping system in the midwestern USA to examine the extent of tree-crop competition for nitrogen and decomposition dynamics of tree leaves and fine roots. A below-ground polyethylene root barrier (1.2 m deep) isolated black walnut roots from maize alleys in half the number of plots providing two treatments viz. ‘barrier’ and ‘no barrier’. The percentage of N derived from fertilizer (%NDF) and fertilizer use efficiency (%UFN) were determined using 15N enriched fertilizer. Further, maize grain and stover biomass, tree leaf biomass, tissue N concentration, and N content were quantified in both treatments. The ‘barrier’ treatment resulted in a significantly greater grain (67.3% more) and stover (37.2% more) biomass than the ‘no barrier’ treatment. The %NDF in both grain and stover was higher in the ‘no barrier’ treatment as a result of competition from tree roots for water and mineralized N in soil. Maize plants growing in the ‘no barrier’ treatment had a lower %UFN than those in the ‘barrier’ treatment due to their smaller size and inability to take up fertilizer. Analysis of tree leaf and fine root decomposition patterns revealed faster release of N (39% over 15 days for black walnut and 17.7% for red oak) and P (30% over 15 days for both species) from roots compared to the leaves of both species. Following an early release of P (11.3% over 45 days), red oak leaves exhibited significant immobilization for the rest of the incubation period. The data indicate that competition for N from fertilizer is minimal since nutrient acquisition is not simultaneous among black walnut and maize. However, competition for mineralized N in soil can exist between black walnut and maize depending on water availability and competition. Tree leaves and fine roots can enhance soil nutrient pools through the addition of soil carbon and nutrients. Tree fine roots seem to play a more significant role in nutrient cycling within the alley cropping system because of their faster release of both N and P as compared to leaves. Selection of tree species and their phenology will impact the magnitude and rate of nutrient cycling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.