Abstract

Blast injuries remain a serious threat to defence and civilian populations around the world. ‘Primary’ blast injuries (PBIs) are caused by direct blast wave interaction with the human body, particularly affecting air-containing organs. Work to define blast loading conditions for injury research has received relatively little attention, though with a continued experimental focus on PBIs and idealised explosion assumptions, meaningful test outcomes and subsequent clinical applications, rely on appropriate simulated conditions. This paper critically evaluates and combines existing PBI criteria (grouped into those affecting the auditory system, pulmonary injuries and brain trauma) as a function of idealised blast wave parameters. For clinical blast injury researchers, analysis of the multi-injury criteria indicates zones of appropriate loading conditions for human-scale test items and demonstrates the importance of simulating blast conditions that are both realistic and relevant to the injury type. For certain explosive scenarios, spatial interpretation of the ‘zones of relevance’ could support emergency response and hazard preparedness by informing triage, patient management and resource allocation, thus leading to improved health outcomes. This work will prove useful to clinical blast injury researchers, blast protection engineers and clinical practitioners involved in the triage, diagnosis, and treatment of PBIs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call