Abstract

Current cell–cell communication analysis focuses on quantifying intercellular interactions at cell type level. In the tissue microenvironment, one type of cells could be divided into multiple cell subgroups that function differently and communicate with other cell types or subgroups via different ligand–receptor-mediated signaling pathways. Given two cell types, we define a cell sub-crosstalk pair (CSCP) as a combination of two cell subgroups with strong and similar intercellular crosstalk signals and identify CSCPs based on coupled non-negative matrix factorization. Using single-cell spatial transcriptomics data of mouse olfactory bulb and visual cortex, we find that cells of different types within CSCPs are significantly spatially closer with each other than those in the whole single-cell spatial map. To demonstrate the utility of CSCPs, we apply 13 cell–cell communication analysis methods to sampled single-cell transcriptomics datasets at CSCP level and reveal ligand–receptor interactions masked at cell type level. Furthermore, by analyzing single-cell transcriptomics data from 29 breast cancer patients with different immunotherapy responses, we find that CSCPs are useful predictive features to discriminate patients responding to anti-PD-1 therapy from non-responders. Taken together, partitioning a cell type pair into CSCPs enables fine-grained characterization of cell–cell communication in tissue and tumor microenvironments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call