Abstract

AimTo assess the utility of different radiomics feature selection methods in predicting transarterial chemoembolization (TACE) response in hepatocellular carcinoma (HCC) patients. Materials and methodsThis study employed a dataset of 136 paired MR T1-weighted contrast-enhanced abdominal images with liver tumor masks before and after TACE. TACE response for each image pair was classified by European Association for the Study of the Liver (EASL) and modified Response Evaluation Criteria in Solid Tumors (mRECIST) guidelines. 100D feature vectors were generated for the paired tumor areas. Eighteen existing feature selection methods were employed to select the top-k features to train and test a non-linear support vector machine (SVM) with a Gaussian kernel. Five-cross validation was performed to identify the highest performing feature selection methods. ResultsFor all benchmarks, a L0-based method selecting the top-5 or top-10 features achieved the highest performance. For images classified with EASL criteria that were analyzed with the L0-based method, the accuracy (ACC), area under curve (AUC), and balanced F score (F1-score) were 0.75 ​± ​0.06, 0.75 ​± ​0.09, and 0.80 ​± ​0.05, respectively. For images classified with mRECIST criteria that were analyzed with the L0-based method, the ACC, AUC, and F1-score were 0.75 ​± ​0.07, 0.71 ​± ​0.16, and 0.82 ​± ​0.04, respectively. ConclusionA L0-based method that selected the top-5/10 most important features predicted TACE response in HCC patients with the highest accuracy under both EASL and mRECIST criteria. This proof-of-concept investigation represents a step forward in the development of a reliable clinical decision-making tool for management of intermediate HCC patients undergoing TACE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.