Abstract
Uncovering conserved 3D protein–ligand binding patterns on the basis of functional groups (FGs) shared by a variety of small molecules can greatly expand our knowledge of protein–ligand interactions. Despite that conserved binding patterns for a few commonly used FGs have been reported in the literature, large-scale identification and evaluation of FG-based 3D binding motifs are still lacking. Here, we propose a computational method, Automatic FG-based Three-dimensional Motif Extractor (AFTME), for automatic mapping of 3D motifs to different FGs of a specific ligand. Applying our method to 233 naturally-occurring ligands, we define 481 FG-binding motifs that are highly conserved across different ligand-binding pockets. Systematic analysis further reveals four main classes of binding motifs corresponding to distinct sets of FGs. Combinations of FG-binding motifs facilitate the binding of proteins to a wide spectrum of ligands with various binding affinities. Finally, we show that our FG–motif map can be used to nominate FGs that potentially bind to specific drug targets, thus providing useful insights and guidance for rational design of small-molecule drugs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.