Abstract

Two-photon polymerization (TPP) is a powerful technique for direct three-dimensional (3D) micro- and nanomanufacturing owing to its unique ability of writing almost arbitrary structures of various materials. In this paper, a novel method is proposed to quantitatively define and measure the dimensional accuracy of TPP tools based on the concept of instrument transfer function (ITF). A circular linear-chirp pattern is designed for characterizing the ITF. Such a pattern is arranged in a linear chirp function with respect to its radial distance from the pattern centre, thus, well representing a signal with a quasi-flat amplitude over a given spectral bandwidth. In addition, the pattern is rotational symmetric, therefore, it is well suited for characterizing the ITF in different angular directions to detect angular-dependent asymmetries. The feasibility of the proposed method is demonstrated on a commercial TPP tool. The manufactured pattern is calibrated by a metrological large range atomic force microscope (AFM) using a super sharp AFM tip, thus the dimensional accuracy and angular-dependent anisotropy of the TPP tool have been well characterized quantitatively. The proposed method is easy to use and reveals the dimensional accuracy of TPP tools under real manufacturing conditions, which concerns not only the optical focus spot size of the exposing laser but also influencing factors such as material shrinkage, light–matter interaction and process parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.