Abstract

We initiate the study of definable [Formula: see text]-topologies and show that there is at most one such [Formula: see text]-topology on a [Formula: see text]-henselian NIP field. Equivalently, we show that if [Formula: see text] is a bi-valued NIP field with [Formula: see text] henselian (respectively, [Formula: see text]-henselian), then [Formula: see text] and [Formula: see text] are comparable (respectively, dependent). As a consequence, Shelah’s conjecture for NIP fields implies the henselianity conjecture for NIP fields. Furthermore, the latter conjecture is proved for any field admitting a henselian valuation with a dp-minimal residue field. We conclude by showing that Shelah’s conjecture is equivalent to the statement that any NIP field not contained in the algebraic closure of a finite field is [Formula: see text]-henselian.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.