Abstract
For a large class of finite dimensional inner product spaces V, over division \(*\)-rings F, we consider definable relations on the subspace lattice \(\mathsf{L}(V)\) of V, endowed with the operation of taking orthogonals. In particular, we establish translations between the relevant first order languages, in order to associate these relations with definable and invariant relations on F—focussing on the quantification type of defining formulas. As an intermediate structure we consider the \(*\)-ring \(\mathsf{R}(V)\) of endomorphisms of V, thereby identifying \(\mathsf{L}(V)\) with the lattice of right ideals of \(\mathsf{R}(V)\), with the induced involution. As an application, model completeness of F is shown to imply that of \(\mathsf{R}(V)\) and \(\mathsf{L}(V)\).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.