Abstract
We introduce the notion of a definable category–a category equivalent to a full subcategory of a locally finitely presentable category that is closed under products, directed colimits and pure subobjects. Definable subcategories are precisely the finite-injectivity classes. We prove a 2-duality between the 2-category of small exact categories and the 2-category of definable categories, and provide a new proof of its additive version. We further introduce a third vertex of the 2-category of regular toposes and show that the diagram of 2-(anti-)equivalences between three 2-categories commutes; the corresponding additive triangle is well-known.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.