Abstract

Let \({{\mathcal D}}\) be the ordered set of isomorphism types of finite distributive lattices, where the ordering is by embeddability. We study first-order definability in this ordered set. We prove among other things that for every finite distributive lattice D, the set {d, dopp} is definable, where d and dopp are the isomorphism types of D and its opposite (D turned upside down). We prove that the only non-identity automorphism of \({{\mathcal D}}\) is the opposite map. Then we apply these results to investigate definability in the closely related lattice of universal classes of distributive lattices. We prove that this lattice has only one non-identity automorphism, the opposite map; that the set of finitely generated and also the set of finitely axiomatizable universal classes are definable subsets of the lattice; and that for each element K of the two subsets, {K, Kopp} is a definable subset of the lattice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.