Abstract

Recent neurobiological models of ADHD suggest that deficits in different neurobiological pathways may independently lead to symptoms of this disorder. At least three independent pathways may be involved: a dorsal frontostriatal pathway involved in cognitive control, a ventral frontostriatal pathway involved in reward processing and a frontocerebellar pathway related to temporal processing. Importantly, we and others have suggested that disruptions in these three pathways should lead to separable deficits at the cognitive level. Furthermore, if these truly represent separate biological pathways to ADHD, these cognitive deficits should segregate between individuals with ADHD. The present study tests these hypotheses in a sample of children, adolescents and young adults with ADHD and controls. 149 Subjects participated in a short computerized battery assessing cognitive control, timing and reward sensitivity. We used Principal Component Analysis to find independent components underlying the variance in the data. The segregation of deficits between individuals was tested using Loglinear Analysis. We found four components, three of which were predicted by the model: Cognitive control, reward sensitivity and timing. Furthermore, 80% of subjects with ADHD that had a deficit were deficient on only one component. Loglinear Analysis statistically confirmed the independent segregation of deficits between individuals. We therefore conclude that cognitive control, timing and reward sensitivity were separable at a cognitive level and that deficits on these components segregated between individuals with ADHD. These results support a neurobiological framework of separate biological pathways to ADHD with separable cognitive deficits.

Highlights

  • Heterogeneity in the clinical presentation is a key characteristic of Attention-Deficit/Hyperactivity Disorder: symptoms take many forms, ranging from subtle but pervasive attention deficits or dreaminess to impairing hyperactive, impulsive and unpredictable behavior [1]

  • We conclude that cognitive control, timing and reward sensitivity were separable at a cognitive level and that deficits on these components segregated between individuals with ADHD

  • As the Principal Component Analysis (PCA) results were so similar between groups, we carried the results from the whole group forward to the stage, we computed the cut-off for deficits separately for the younger and older groups

Read more

Summary

Introduction

Heterogeneity in the clinical presentation is a key characteristic of Attention-Deficit/Hyperactivity Disorder: symptoms take many forms, ranging from subtle but pervasive attention deficits or dreaminess to impairing hyperactive, impulsive and unpredictable behavior [1]. Theoretical accounts that stress the possibility of multiple etiological pathways to ADHD [2,4] implicitly or explicitly suggest that affected neurocognitive functions and neurobiological systems associated with them may be separable. This has received surprisingly little attention in the neuropsychological literature on ADHD, where cognitive work addressing heterogeneity has typically investigated neuropsychological correlates of the clinical diversity of the disorder, comparing ADHD subtypes or subgroups with specific comorbidities. They used an extensive test battery and found separable components of inhibition, timing and delay aversion that seemed to segregate between individuals with ADHD

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.