Abstract

Acute physical or psychological stress can elicit adaptive behaviors that allow an organism maintain homeostasis. However, intense and/or prolonged stressors often have the opposite effect, resulting in maladaptive behaviors and curbing goal-directed action; in the extreme, this may contribute to the development of psychiatric conditions like generalized anxiety disorder, major depressive disorder, or post-traumatic stress disorder. While treatment of these disorders generally focuses on reducing reactivity to potentially threatening stimuli, there are in fact impairments across multiple domains including valence, arousal, and cognition. Here, we use the genetically stress-susceptible 129S1 mouse strain to explore the effects of stress across multiple domains. We find that 129S1 mice exhibit a potentiated neuroendocrine response across many environments and paradigms, and that this is associated with reduced exploration, neophobia, decreased novelty- and reward-seeking, and spatial learning and memory impairments. Taken together, our results suggest that the 129S1 strain may provide a useful model for elucidating mechanisms underlying myriad aspects of stress-linked psychiatric disorders as well as potential treatments that may ameliorate symptoms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.