Abstract

Metabolic factors have been proposed to explain strength deficits observed in skeletal muscle with immobilization that are not completely accounted for by changes in muscle cross-sectional area (CSA) and neural adaptations. The aim of this study was to quantify changes in the resting inorganic phosphate (Pi) concentration from the medial gastrocnemius muscle during immobilization, reloading and rehabilitation. Additionally, we assessed the contributions of CSA, muscle activation and Pi concentration to plantar flexor torque during rehabilitation following immobilization. Eight persons with a surgically stabilized ankle fracture participated. Subjects were immobilized for 6-8 weeks and subsequently participated in 10 weeks of rehabilitation. Localized (31)P-Magnetic resonance spectroscopy, magnetic resonance imaging, isometric torque and activation testing were performed on the immobilized and uninvolved limbs. At 6 weeks of immobilization, significant differences were noted between the immobilized and uninvolved limbs for the Pi concentration and the Pi/PCr ratio (P < 0.05). From 6 weeks of immobilization to 3-5 days of reloading, the increase in Pi concentration (15%, P = 0.26) and Pi/PCr (20%, P = 0.29) was not significant. During rehabilitation, the relative contributions of CSA, muscle activation and Pi concentration to plantarflexor torque were 32, 44 and 40%, respectively. Together, CSA, muscle activation and Pi concentration accounted for 76% of the variance in torque (P < 0.01). In summary, our findings suggest that immobilization, independent of reloading, leads to a significant increase in the resting Pi concentration of human skeletal muscle. Additionally, alterations in resting Pi concentration may contribute to strength deficits with immobilization not accounted for by changes in muscle CSA or neural adaptations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call