Abstract

Rank-constrained spatial covariance matrix estimation (RCSCME) is a blind speech extraction method utilized under the condition that one-directional target speech and diffuse background noise are mixed. In this paper, we propose a new model extension of RCSCME. RCSCME simultaneously conducts both the deficient rank-1 component complementation of the diffuse noise spatial covariance matrix, which is incompletely estimated by preprocessing methods such as independent low-rank matrix analysis, and the estimation of the source model parameters. In the conventional RCSCME, between the two parameters constituting the deficient rank-1 component, only the scale is estimated, whereas the other parameter, the deficient basis, is fixed in advance; however, how to choose the fixed deficient basis is not unique. In the proposed RCSCME model, we also regard the deficient basis as a parameter to estimate. As the generative model of an observed signal, we utilized the super-Gaussian generalized Gaussian distribution, which achieves better separation performance than the Gaussian distribution in the conventional RCSCME. Assuming the model, we derive new majorization-minimization (MM)- and majorization-equalization (ME)-algorithm-based update rules for the deficient basis. In particular, among innumerable ME-algorithm-based update rules, we successfully find an ME-algorithm-based update rule with a mathematical proof supporting the fact that the step of the update rule is larger than that of the MM-algorithm-based update rule. We confirm that the proposed method outperforms conventional methods under several simulated noise conditions and a real noise condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.