Abstract

Fucosyltransferase 2 (Fut2)-mediated intestinal α1-2-fucosylation is important in maintaining a symbiotic host-microbiota relationship and can protect against several pathogens. Intestinal dysbiosis is an important factor for the progression of experimental ethanol (EtOH)-induced liver disease, but the role of Fut2 in modulating the intestinal glycocalyx during alcohol-associated liver disease is unknown. We investigated the role of Fut2-mediated intestinal α1-2-fucosylation for the development of alcohol-associated liver disease. Immunohistochemistry staining was applied to evaluate α1-2-fucosylation in duodenal biopsies from patients with alcohol use disorder. Wild-type (WT) and Fut2-deficient littermate mice were subjected to Lieber-DeCarli models of chronic EtOH administration and the chronic-binge EtOH diet (NIAAA model). Intestinal α1-2-fucosylation was down-regulated in patients with alcohol use disorder. Lack of α1-2-fucosylation in Fut2-deficient mice exacerbates chronic EtOH-induced liver injury, steatosis, and inflammation without affecting EtOH metabolism. Dietary supplementation of the α1-2-fucosylated glycan 2'-fucosyllactose (2'-FL) ameliorates EtOH-induced liver disease in Fut2-deficient mice in the NIAAA model. Despite no direct effects on growth of Enterococcus faecalis in vitro, intestinal α1-2-fucosylation reduces colonization of cytolysin-positive E. faecalis in the intestine of EtOH-fed mice. Intestinal α1-2-fucosylation acts as a host-protective mechanism against EtOH-induced liver disease. 2'-FL is an oligosaccharide naturally present in human milk that could be considered as therapeutic agent for alcohol-associated liver disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call