Abstract
The treatment of eosinophilic chronic rhinosinusitis with nasal polyps (E-CRSwNP) remains a challenge due to its complex pathogenesis. Inositol polyphosphate-4-phosphatase type IA (INPP4A), a lipid phosphatase, has been implicated in allergic asthma. However, the expression and function of INPP4A in E-CRSwNP remain unclear. This study aims to investigate the role of INPP4A in macrophages in E-CRSwNP. We assessed the expression of INPP4A in human and mouse nasal mucosal tissues via immunofluorescence staining. THP-1 cells were cultured and exposed to various cytokines to investigate the regulation of INPP4A expression and its functional role. Additionally, we established a murine nasal polyp (NP) model and administrated an INPP4A-overexpressing lentivirus evaluate its impact on NP. The percentage of INPP4A + CD68 + macrophages among total macrophages decreased in the E-CRSwNP group compared to the control and the non-eosinophilic CRSwNP (NE-CRSwNP) groups, exhibiting an inverse correlation with an increased percentage of CD206 + CD68 + M2 macrophages among total macrophages. Overexpression of INPP4A led to a reduced percentage of THP-1 cells polarizing towards the M2 phenotype, accompanied by decreased levels of associated chemotactic factors including CCL18, CCL22, CCL24, and CCL26. We also validated the involvement of the PI3K-AKT pathway in the function of INPP4A in vitro. Furthermore, INPP4A overexpression in the murine NP model resulted in the attenuation of eosinophilic inflammation in the nasal mucosa. INPP4A deficiency promotes macrophage polarization towards the M2 phenotype, leading to the secretion of chemokines that recruit eosinophils and Th2 cells, thereby amplifying eosinophilic inflammation in E-CRSwNP. INPP4A may exert a suppressive role in eosinophilic inflammation and could potentially serve as a novel therapeutic strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.