Abstract

Thoracic aortic dissection (TAD) is a life-threatening vascular disease. We showed that CD44, a widely distributed cell surface adhesion molecule, has an important role in inflammation. In this study, we examined the role of CD44 in the development of TAD. TAD was induced by the continuous infusion of β-aminopropionitrile (BAPN), a lysyl oxidase inhibitor, and angiotensin II (AngII) for 7 days in wild type (WT) mice and CD44 deficient (CD44-/-) mice. The incidence of TAD in CD44-/- mice was significantly reduced compared with WT mice (44% and 6%, p < 0.01). Next, to evaluate the initial changes, aortic tissues at 24 hours after BAPN/AngII infusion were examined. Neutrophil accumulation into thoracic aortic adventitia in CD44-/- mice was significantly decreased compared with that in WT mice (5.7 ± 0.3% and 1.6 ± 0.4%, p < 0.01). In addition, BAPN/AngII induced interleukin-6, interleukin-1β, matrix metalloproteinase-2 and matrix metalloproteinase-9 in WT mice, all of which were significantly reduced in CD44−/− mice (all p < 0.01). In vitro transmigration of neutrophils from CD44−/− mice through an endothelial monolayer was significantly decreased by 18% compared with WT mice (p < 0.01). Our findings indicate that CD44 has a critical role in TAD development in association with neutrophil infiltration into adventitia.

Highlights

  • Thoracic aortic dissection (TAD) is a life-threatening vascular disease

  • The incidence of TAD after by the continuous infusion of β-aminopropionitrile (BAPN)/angiotensin II (AngII) treatment was significantly reduced in CD44−/− mice compared with wild type (WT) mice (44% and 6%, p < 0.01)

  • We provide evidence that CD44 has an important role in TAD formation

Read more

Summary

Introduction

Thoracic aortic dissection (TAD) is a life-threatening vascular disease. We showed that CD44, a widely distributed cell surface adhesion molecule, has an important role in inflammation. TAD was induced by the continuous infusion of β-aminopropionitrile (BAPN), a lysyl oxidase inhibitor, and angiotensin II (AngII) for 7 days in wild type (WT) mice and CD44 deficient (CD44-/-) mice. Neutrophil accumulation into thoracic aortic adventitia in CD44-/- mice was significantly decreased compared with that in WT mice (5.7 ± 0.3% and 1.6 ± 0.4%, p < 0.01). BAPN/AngII induced interleukin-6, interleukin-1β, matrix metalloproteinase-2 and matrix metalloproteinase-9 in WT mice, all of which were significantly reduced in CD44−/− mice (all p < 0.01). A mouse model in which TAD was induced by the simultaneous infusion of β-aminopropionitrile (BAPN) and angiotensin II (AngII) for 7 days was used. We investigated the role of CD44 in TAD induced by BAPN/AngII by comparing wild type (WT) and CD44 deficient (CD44−/−) mice

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.