Abstract

Mice deficient in the circadian clock gene BMAL1 (Brain and Muscle ARNT-like protein-1) exhibit a hypercoagulable state and an enhanced arterial and venous thrombogenicity, which aggravates with age. We investigated the effect of BMAL1 deficiency in mice at a different age on the diurnal rhythm of factors involved in coagulation and fibrinolysis. Hepatic, cardiac and brain tissues were isolated from 10- and 25-weeks-old Bmal1-deficient (BMAL1-/-) and wild-type (BMAL1+/+) mice at ZT2 and at ZT14 to analyze the mRNA expression level of genes involved in coagulation and fibrinolysis. Body weight and brain weight were significantly lower in all BMAL1-/- versus BMAL1+/+ mice. Bmal1 deficiency disturbed the diurnal rhythm of plasminogen activator inhibitor-1 (PAI-1) in liver and plasma, but not in cardiac or brain tissues. BMAL1+/+ livers showed diurnal fluctuations in factor (F)VII, FVII, protein S and anti-thrombin gene expression, which were not observed in BMAL1-/- tissues. Interestingly, tissue plasminogen activator (t-PA) expression was significantly upregulated in all BMAL1-/- versus BMAL1+/+ brains at both time points. Plasma t-PA-PAI-1 complex levels were however similar for all groups. Bmal1 deficiency affected the biphasic rhythm of coagulation and fibrinolysis factors predominantly in the liver. In the brain, Bmal1-dependent control of t-PA gene expression was documented for the first time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call