Abstract
Hyperoxia generates an oxidative stress in the mouse lung, which activates the major stress-inducible kinase pathways, including c-Jun NH2-terminal kinase (JNK). We examined the effect of Jnk1 gene deletion on in vivo responses to hyperoxia in mice. The survival of Jnk1-/- mice was reduced relative to wild-type mice after exposure to continuous hyperoxia. Jnk1-/- mice displayed higher protein concentration in bronchoalveolar lavage (BAL) fluid and increased expression of heme oxygenase-1, a stress-inducible gene, after 65 h of hyperoxia. Contrary to other markers of injury, the leukocyte count in BAL fluid of Jnk1-/- mice was markedly diminished relative to that of wild-type mice. The decrease in BAL leukocyte count was not associated with any decrease in lung myeloperoxidase activity at baseline or after hyperoxia treatment. Pretreatment with inhaled lipopolysaccharide increased BAL neutrophil content and extended hyperoxia survival time to a similar extent in Jnk1-/- and wild-type mice. Associated with increased mortality, Jnk1-/- mice had increased pulmonary epithelial cell apoptosis after exposure to hyperoxia compared with wild-type mice. These results indicate that JNK pathways participate in adaptive responses to hyperoxia in mice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American journal of physiology. Lung cellular and molecular physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.