Abstract

Tetrapyrrole biosynthesis is controlled by multiple environmental and endogenous cues. Etiolated T-DNA insertion mutants were screened for red fluorescence as result of elevated levels of protochlorophyllide and four red fluorescent in the dark (rfd) mutants were isolated and identified. rfd3 and rfd4 belong to the group of photomorphogenic cop/det/fus mutants. rfd1 and rfd2 had genetic lesions in RIBA1 and FLU encoding the dual-functional protein GTP cyclohydrolase II/3,4-dihydroxy-2-butanone-4-phosphate synthase and a negative regulator of tetrapyrrole biosynthesis, respectively. RIBA1 catalyses the initial reaction of the metabolic pathway of riboflavin biosynthesis and rfd1 contains reduced contents of riboflavin and the flavo-coenzymes FMN and FAD. Transcriptome analysis of rfd1 revealed up-regulated genes encoding nucleus-localized factors involved in cytokinin signalling and numerous down-regulated LEA genes as well as an auxin-inducible GH3 gene. Alteration of cytokinin metabolism of rfd1was confirmed by elevated contents of active forms of cytokinin and stimulated expression of an ARR6::GUS reporter construct. An etiolated quadruple ckx (cytokinin oxidase) mutant with impaired cytokinin degradation as well as different knockout mutants for the negative AUX/IAA regulators shy2-101 (iaa3), axr2-1 (iaa7) and slr-1 (iaa14) showed also excessive protochlorophyllide accumulation. The transcript levels of CHLH and HEMA1 encoding Mg chelatase and glutamyl-tRNA reductase were increased in rfd1 and the AUX/IAA loss-of-function mutants. It is proposed that reduced riboflavin synthesis impairs the activity of the flavin-containing cytokinin oxidase, increases cytokinin contents and de-represses synthesis of 5-aminolevulinic acid of tetrapyrrole metabolism in darkness. As result of the mutant analyses, the antagonistic cytokinin and auxin signalling is required for a balanced tetrapyrrole biosynthesis in the dark.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.