Abstract
Cardiolipin (CL) is the signature lipid of the mitochondrial membrane and plays a key role in mitochondrial physiology and cell viability. The importance of CL is underscored by the finding that the severe genetic disorder Barth syndrome results from defective CL composition and acylation. Disruption of PGS1, which encodes the enzyme that catalyses the committed step of CL synthesis, results in loss of the mitochondrial anionic phospholipids phosphatidylglycerol and CL. The pgs1Δ mutant exhibits severe growth defects at 37°C. To understand the essential functions of mitochondrial anionic lipids at elevated temperatures, we isolated suppressors of pgs1Δ that grew at 37°C. The present review summarizes our analysis of suppression of pgs1Δ growth defects by a mutant that has a loss-of-function mutation in KRE5, a gene involved in cell wall biogenesis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.