Abstract

Simple SummaryNeuronal plasticity refers to the brain’s ability to adapt in response to activity-dependent changes. This process, among others, allows the brain to acquire memory or to compensate for a neurocognitive deficit. We analyzed adult FTSJ1-deficient mice in order to gain insight into the role of FTSJ1 in neuronal plasticity. These mice displayed alterations in the hippocampus (a brain structure that is involved in memory and learning, among other functions) e.g., in the form of changes in dendritic spines. Changes in dendritic spines are considered to represent a morphological hallmark of altered neuronal plasticity, and thus FTSJ1 deficiency might have a direct effect upon the capacity of the brain to adapt to plastic changes. Long-term potentiation (LTP) is an electrophysiological correlate of neuronal plasticity, and is related to learning and to processes attributed to memory. Here we show that LTP in FTSJ1-deficient mice is reduced, hinting at disturbed neuronal plasticity. These findings suggest that FTSJ1 deficiency has an impact on neuronal plasticity not only morphologically but also on the physiological level.The role of the tRNA methyltransferase FTSJ1 in the brain is largely unknown. We analyzed whether FTSJ1-deficient mice (KO) displayed altered neuronal plasticity. We explored open field behavior (10 KO mice (aged 22–25 weeks)) and 11 age-matched control littermates (WT) and examined mean layer thickness (7 KO; 6 WT) and dendritic spines (5 KO; 5 WT) in the hippocampal area CA1 and the dentate gyrus. Furthermore, long-term potentiation (LTP) within area CA1 was investigated (5 KO; 5 WT), and mass spectrometry (MS) using CA1 tissue (2 each) was performed. Compared to controls, KO mice showed a significant reduction in the mean thickness of apical CA1 layers. Dendritic spine densities were also altered in KO mice. Stable LTP could be induced in the CA1 area of KO mice and remained stable at for at least 1 h, although at a lower level as compared to WTs, while MS data indicated differential abundance of several proteins, which play a role in neuronal plasticity. FTSJ1 has an impact on neuronal plasticity in the murine hippocampal area CA1 at the morphological and physiological levels, which, in conjunction with comparable changes in other cortical areas, might accumulate in disturbed learning and memory functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call